Generic File Source Options
These generic options/configurations are effective only when using file-based sources: parquet, orc, avro, json, csv, text.
Please note that the hierarchy of directories used in examples below are:
dir1/
├── dir2/
│ └── file2.parquet (schema: <file: string>, content: "file2.parquet")
└── file1.parquet (schema: <file, string>, content: "file1.parquet")
└── file3.json (schema: <file, string>, content: "{'file':'corrupt.json'}")Ignore Corrupt Files
Spark allows you to use spark.sql.files.ignoreCorruptFiles to ignore corrupt files while reading data
from files. When set to true, the Spark jobs will continue to run when encountering corrupted files and
the contents that have been read will still be returned.
To ignore corrupt files while reading data files, you can use:
// enable ignore corrupt files
spark.sql("set spark.sql.files.ignoreCorruptFiles=true")
// dir1/file3.json is corrupt from parquet's view
val testCorruptDF = spark.read.parquet(
"examples/src/main/resources/dir1/",
"examples/src/main/resources/dir1/dir2/")
testCorruptDF.show()
// +-------------+
// | file|
// +-------------+
// |file1.parquet|
// |file2.parquet|
// +-------------+// enable ignore corrupt files
spark.sql("set spark.sql.files.ignoreCorruptFiles=true");
// dir1/file3.json is corrupt from parquet's view
Dataset<Row> testCorruptDF = spark.read().parquet(
"examples/src/main/resources/dir1/",
"examples/src/main/resources/dir1/dir2/");
testCorruptDF.show();
// +-------------+
// | file|
// +-------------+
// |file1.parquet|
// |file2.parquet|
// +-------------+# enable ignore corrupt files
spark.sql("set spark.sql.files.ignoreCorruptFiles=true")
# dir1/file3.json is corrupt from parquet's view
test_corrupt_df = spark.read.parquet("examples/src/main/resources/dir1/",
"examples/src/main/resources/dir1/dir2/")
test_corrupt_df.show()
# +-------------+
# | file|
# +-------------+
# |file1.parquet|
# |file2.parquet|
# +-------------+# enable ignore corrupt files
sql("set spark.sql.files.ignoreCorruptFiles=true")
# dir1/file3.json is corrupt from parquet's view
testCorruptDF <- read.parquet(c("examples/src/main/resources/dir1/", "examples/src/main/resources/dir1/dir2/"))
head(testCorruptDF)
# file
# 1 file1.parquet
# 2 file2.parquetIgnore Missing Files
Spark allows you to use spark.sql.files.ignoreMissingFiles to ignore missing files while reading data
from files. Here, missing file really means the deleted file under directory after you construct the
DataFrame. When set to true, the Spark jobs will continue to run when encountering missing files and
the contents that have been read will still be returned.
Path Global Filter
pathGlobFilter is used to only include files with file names matching the pattern.
The syntax follows org.apache.hadoop.fs.GlobFilter.
It does not change the behavior of partition discovery.
To load files with paths matching a given glob pattern while keeping the behavior of partition discovery, you can use:
val testGlobFilterDF = spark.read.format("parquet")
.option("pathGlobFilter", "*.parquet") // json file should be filtered out
.load("examples/src/main/resources/dir1")
testGlobFilterDF.show()
// +-------------+
// | file|
// +-------------+
// |file1.parquet|
// +-------------+Dataset<Row> testGlobFilterDF = spark.read().format("parquet")
.option("pathGlobFilter", "*.parquet") // json file should be filtered out
.load("examples/src/main/resources/dir1");
testGlobFilterDF.show();
// +-------------+
// | file|
// +-------------+
// |file1.parquet|
// +-------------+df = spark.read.load("examples/src/main/resources/dir1",
format="parquet", pathGlobFilter="*.parquet")
df.show()
# +-------------+
# | file|
# +-------------+
# |file1.parquet|
# +-------------+df <- read.df("examples/src/main/resources/dir1", "parquet", pathGlobFilter = "*.parquet")
# file
# 1 file1.parquetRecursive File Lookup
recursiveFileLookup is used to recursively load files and it disables partition inferring. Its default value is false.
If data source explicitly specifies the partitionSpec when recursiveFileLookup is true, exception will be thrown.
To load all files recursively, you can use:
val recursiveLoadedDF = spark.read.format("parquet")
.option("recursiveFileLookup", "true")
.load("examples/src/main/resources/dir1")
recursiveLoadedDF.show()
// +-------------+
// | file|
// +-------------+
// |file1.parquet|
// |file2.parquet|
// +-------------+Dataset<Row> recursiveLoadedDF = spark.read().format("parquet")
.option("recursiveFileLookup", "true")
.load("examples/src/main/resources/dir1");
recursiveLoadedDF.show();
// +-------------+
// | file|
// +-------------+
// |file1.parquet|
// |file2.parquet|
// +-------------+recursive_loaded_df = spark.read.format("parquet")\
.option("recursiveFileLookup", "true")\
.load("examples/src/main/resources/dir1")
recursive_loaded_df.show()
# +-------------+
# | file|
# +-------------+
# |file1.parquet|
# |file2.parquet|
# +-------------+recursiveLoadedDF <- read.df("examples/src/main/resources/dir1", "parquet", recursiveFileLookup = "true")
head(recursiveLoadedDF)
# file
# 1 file1.parquet
# 2 file2.parquet