
create-theorem
Initializing and configuring theorem-like environments, with multilingual support

JINWEN XU
October 2025, in Melbourne

Abstract
The package create-theorem provides commands for naming, initializing and configuring

theorem-like environments. All of these commands have key-value based interface and
are especially useful in multi-language documents, allowing the easy declaration of

theorem-like environments that can automatically adapt to the language settings.

1
How to load it

First, you need a backend to provide the command \newtheorem with its usual behaviour,
such as amsthm or ntheorem. After that, you can simply load the current package with:

\usepackage[⟨options⟩]{create-theorem}

ATTENTION
Since create-theorem uses cleveref internally, it should usually be placed near the end
of preamble — notably, it must be loaded after the packages varioref and hyperref.

It has the following options:
name as context

When referencing, the resulted names shall correspond to the current context of your
text. For example, the names shall be displayed in English when you are referencing a
theorem-like environment in an English context, no matter in which linguistic context
the target environment appeared.
This is the default behavior.
Synonymous names: name-as-context | nameascontext | regionalref

name as is
When referencing, the resulted names shall correspond to the contexts in which the
target environments appeared. For example, if the target environment is written in an
English context, then its name shall always be displayed in English when referencing,
regardless of the current linguistic context.
Synonymous names: name-as-is | nameasis | originalref

name in link
Include the names in the hyperlinks when referencing.
Synonymous names: name-in-link | nameinlink

no preset names
Disable the preset names. Use this option if you want to define you own name set.
Synonymous names: no-preset-names | nopresetnames

Corresponding to: create-theorem 2025/10/21

HOW TO LOAD IT 1

2
How to use it

2.1 Naming theorem-like environments with \NameTheorem
The syntax of \NameTheorem is as follows:

\NameTheorem{⟨name of environment⟩}{⟨key-value configuration⟩}

Supported keys are:
heading = ⟨configuration⟩

The heading of the environment, where ⟨configuration⟩ can be:
∘ a single string in monolingual documents: heading = ⟨string⟩;
∘ a key-value name list in multilingual documents:

heading = {
⟨language name⟩ = ⟨string⟩

}
heading style = ⟨style⟩

The style of the heading, you can specify the font, text style, color, etc.
Synonymous names: heading-style | headingstyle

crefname = ⟨configuration⟩
The name for \cref the environment, where ⟨configuration⟩ can be:
∘ a single string in monolingual documents: crefname = {name}{names};
∘ a key-value name list in multilingual documents:

crefname = {
⟨language name⟩ = {⟨singular name⟩}{⟨plural name⟩}

}
Also supports the syntax of \crefthename, thus you can assign names of the form:

[⟨singular definite article⟩]{⟨singular name⟩}[⟨plural definite article⟩]{⟨plural name⟩}
This would be useful for languages like French, Italian, Spanish, etc.
Also supports the syntax of \crefthevariantname, thus you can assign different set of
names for different variants/declensions (the first line in the configuration is the de-
fault name set, which is used in case no variants is specified when referencing):

crefname = {
⟨language name⟩ = { [...]{...}[...]{...}

, ⟨variant 1⟩ = [...]{...}[...]{...}
, ⟨variant 2⟩ = [...]{...}[...]{...}
...

}
}

This would be useful for languages like German, Russian, etc.
crefname style = ⟨style⟩

The style of “crefname” when referencing, you may specify the font, text style, color,
etc.
Synonymous names: crefname-style | crefnamestyle

2.1 Naming theorem-like environments 2

Crefname = ⟨configuration⟩
The name for \Cref the environment, its syntax is the same as that of crefname.
Also supports the syntax of \Crefthename and \Crefthevariantname.

Crefname style = ⟨style⟩
The style of “Crefname” when referencing, you may specify the font, text style, color,
etc.
Synonymous names: Crefname-style | Crefnamestyle

numbering style = ⟨style⟩
The style of numbering in the reference, you can specify the font, text style, color, etc.
Synonymous names: numbering-style | numberingstyle

use name = ⟨list of existed environment(s) separated with semicolon “ ; ”⟩
Use the name(s) and style(s) of the given environment(s). If there are multiple ones
specified, the result would be a string combining the names, separated with “-”.
The definite articles (if exist) are chosen to be that of the last given environment.
Synonymous names: combined | use-name | usename
TIP

You can also define the names within \CreateTheorem while initializing the theorem-
like environments. \NameTheorem is especially useful for package or class authors who
wish to preset suitable names (with styles) in their packages or classes.

2.2 Initializing theorem-like environments with \CreateTheorem
The syntax of \CreateTheorem is as follows:

\CreateTheorem{⟨list of the name of environments⟩}{⟨key-value configuration⟩}

ATTENTION
When the ⟨key-value configuration⟩ is empty, don’t forget to include the second pair of
curly brackets, for example, \CreateTheorem{theorem}{}.

Supported keys are:
name = ⟨configuration⟩ or name style = ⟨configuration⟩

Setting the names. Same as \NameTheorem{⟨name of environment⟩}{⟨configuration⟩}.
Synonymous names: name-style | namestyle

use name = ⟨list of existed environment(s) separated with semicolon “ ; ”⟩
Using existed name(s). Same as in \NameTheorem.
Synonymous names: combined | use-name | usename

style = ⟨theorem style⟩
Specifying the \theoremstyle for the current environment.
Synonymous names: apply style | apply-style | applystyle

qed or qed = ⟨Q.E.D. symbol⟩
Specifying the Q.E.D. symbol for the current environment.
Note that the Q.E.D. symbol has already been put in math mode. If you want regular
text such as “Q.E.D.”, you need to write qed = \mathrm{Q.E.D.}.
If you are using ntheorem as the backend, then you need to load it with option thmmarks.
Synonymous names: qed symbol | qed-symbol | qedsymbol

2.2 Initializing theorem-like environments 3

parent counter = ⟨parent counter⟩
Specifying the ⟨parent counter⟩ for the current environment, i.e., numbering will restart
whenever that sectional level is encountered.
Synonymous names: parent-counter | parentcounter |

number within | number-within | numberwithin
shared counter = ⟨shared counter⟩

Specifying the ⟨shared counter⟩ for the current environment, i.e., numberingwill progress
sequentially for all theorem-like environments using this counter.
Synonymous names: shared-counter | sharedcounter |

number like | number-like | numberlike
numberless

Defining the current environment to be unnumbered.
create starred version

Defining a corresponding starred (unnumbered) version of the current environment.
It must be placed before qed if you want the starred version to have a Q.E.D symbol.
Synonymous names: create-starred-version | createstarredversion |

create numberless version | create-numberless-version |
createnumberlessversion

copy existed = ⟨existed environment⟩
Defining the current environment to be the same as ⟨existed environment⟩.
This key is usually useful in the following two situations:
1) To use a more concise name. For example, with \CreateTheorem{thm}{copy

existed = theorem}, one can then use the name thm to write theorems.
2) To remove the numbering of some environments. For example, one can remove

the numbering of the remark environment with \CreateTheorem{remark}{copy existed
= remark*}.

Synonymous names: copy-existed | copyexisted

TIP
The names for the following environments (and their plural forms) have been preset:
application, assertion, assumption, axiom, claim, commentary, conclusion, conjecture, con-
struction, convention, corollary, definition, example, exercise, fact, hypothesis, lemma,
motivation, notation, observation, postulate, problem, property, proposition, question,
recall, remark and theorem. If you are fine with the preset names, then there is no
need to specify the key “name” while creating them, otherwise you shall have to use
the package option “no preset names” to disable the presets and then define your own
ones.

Please note that, for the sake of generality, the environment ⟨env⟩ and its starred relative
⟨env⟩* do not share the same set of names when they are separately defined. However, with
proper usage of create starred version and copy existed, you should already be able to
produce all of the following combinations that shares the same set of names: 1) numbered
⟨env⟩, numbered ⟨env⟩* ; 2) numbered ⟨env⟩, unnumbered ⟨env⟩* ; 3) unnumbered ⟨env⟩,
numbered ⟨env⟩* ; and 4) unnumbered ⟨env⟩, unnumbered ⟨env⟩*. I left it as an easy exercise
for you ;-) The answer can be found in section 3.2.

2.2 Initializing theorem-like environments 4

2.3 Configuring theorem-like environments with \SetTheorem
The previous two commands are especially useful for package or class writers, while this
one is more for the users. If you are not satisfied with preset name styles or numbering
settings, then even after initializing the environments, you can still further configure them
by means of \SetTheorem, the syntax of which is as follows:
\SetTheorem{⟨list of the name of environments⟩}{⟨key-value configuration⟩}
Supported keys are:
name = ⟨configuration⟩ and name style = ⟨configuration⟩

Same as \NameTheorem{⟨name of environment⟩}{⟨configuration⟩}.
Note that this configuration can overwrite those already specified in \NameTheorem.
Synonymous names: name-style | namestyle

qed = ⟨Q.E.D. symbol⟩
Specifying the Q.E.D. symbol for the current environment.
Note that this configuration only works if you have already enabled the Q.E.D. symbol
during the creating phase of the corresponding environment.
Synonymous names: qed symbol | qed-symbol | qedsymbol

parent counter = ⟨parent counter⟩
Specifying the ⟨parent counter⟩ for the current environment, i.e., numbering will restart
whenever that sectional level is encountered.
Note that this configuration can overwrite those already specified in \CreateTheorem.
Synonymous names: parent-counter | parentcounter |

number within | number-within | numberwithin
shared counter = ⟨shared counter⟩

Specifying the ⟨shared counter⟩ for the current environment, i.e., numberingwill progress
sequentially for all theorem-like environments using this counter.
Note that this configuration can overwrite those already specified in \CreateTheorem.
Synonymous names: shared-counter | sharedcounter |

number like | number-like | numberlike
In some cases, you may define an internal environment (for example, a generic version) first
and then use it to define the final environment. You may wish to hide the internal names
from the users so that they can use \SetTheorem with the name of the final environments.
This can be done with the following command:
\SetTheoremBinding{⟨list of the name of environments⟩}{⟨the environment to bind with⟩}

2.4 Setting the names in external language configuration files with \NameTheorems
The command \NameTheorem introduced earlier is for defining the names of a given environ-
ment for each language, which is more natural to use within a real-life document. However,
for package/class authors wishing to maintain their language configuration files, it would
be more convenient to use the following \NameTheorems, which assigns the names for a given
language all at once, made it possible to preset the names inside external files.

The syntax of \NameTheorems is as follows (please note that the ⟨language name⟩ here should
be consistent with \languagename):
\NameTheorems{⟨language name⟩}{⟨key-value configuration⟩}

2.4 Setting the names in external language configuration files 5

Supported keys are (notice that you cannot set the styles via \NameTheorems):
heading = ⟨configuration⟩

The headings of the environments, where ⟨configuration⟩ is a key-value name list:

heading = {
⟨name of environment⟩ = ⟨string⟩

}
crefname = ⟨configuration⟩

The names for \cref the environments, where ⟨configuration⟩ is a key-value name list:

crefname = {
⟨name of environment⟩ = {⟨singular name⟩}{⟨plural name⟩}

}
Also supports the syntax of \crefthename and \crefthevariantname.
Please refer to the description of \NameTheorem for more details.

Crefname = ⟨configuration⟩
The names for \Cref the environments, its syntax is the same as that of crefname.
Also supports the syntax of \Crefthename and \Crefthevariantname.
Please refer to the description of \NameTheorem for more details.

If you’re feeling confused, don’t worry. Let’s now take a look at some examples.

3
Examples

3.1 The environment idea
First, let’s getting familiar with these two commands by creating the environment idea.
\NameTheorem{idea}

{
heading = Idea,
crefname = {idea}{ideas},
Crefname = {Idea}{Ideas},

}
\CreateTheorem{idea}{ parent counter = section }

or to do it in one turn:

\CreateTheorem{idea}
{

name = {
heading = Idea,
crefname = {idea}{ideas},
Crefname = {Idea}{Ideas},

},
parent counter = section,

}

3.1 The environment idea 6

This is not exciting at all. Now, let’s say we are writing a trilingual note in English, French
and German. (I shall omit the \NameTheorem version and do it all at once in \CreateTheorem.)
\CreateTheorem{idea}

{
name = {

heading = { english = Idea,
french = Idée,
ngerman = Idee, },

crefname = { english = {idea}{ideas},
french = [l']{idée}[les]{idées},
ngerman = { {Idee}{Idee}
, Nominativ = [die]{Idee}[die]{Ideen}
, Genitiv = [der]{Idee}[der]{Ideen}
, Dativ = [der]{Idee}[den]{Ideen}
, Akkusativ = [die]{Idee}[die]{Ideen}

} },
Crefname = { english = {Idea}{Ideas},

french = [L']{idée}[Les]{idées},
ngerman = { {Idee}{Idee}
, Nominativ = [Die]{Idee}[Die]{Ideen}
, Genitiv = [Der]{Idee}[Der]{Ideen}
, Dativ = [Der]{Idee}[Den]{Ideen}
, Akkusativ = [Die]{Idee}[Die]{Ideen}

} },
},

parent counter = section,
}

With this, if you use \selectlanguage{french}, the idea environment shall be automatically
displayed as “Idée”. And if you \crefthe it, the definite article and the name would show
up properly just as expected.

The same happens for German with \selectlanguage{ngerman}, and when referencing an
idea environment, you may specify the declension as \crefthe[⟨prep⟩,declension=Nominativ]
{⟨label⟩}, or more simply, with a shortcut such as \crefthe[⟨prep⟩,nom.]{⟨label⟩}.

TIP
For more datailed usage of the referencing command \crefthe, please refer to the
documentation of the package crefthe.

Next we shall deal with the problem of numbering. Let’s continue to use this environment
idea for demonstration — suppose that we have already set the names with \NameTheorem.

3.2 Let’s play with numbering

Remember the exercise I left you in the previous section? Let’s do it together now.

3.2 Let’s play with numbering 7

3.2.1 Numbered idea and numbered idea*
This is easy, copy existed suffices:

\CreateTheorem{idea}{parent counter = section}
\CreateTheorem{idea*}{copy existed = idea}

3.2.2 Numbered idea and unnumbered idea*
This is the most common situation, create starred version will do.

\CreateTheorem{idea}
{

parent counter = section,
create starred version,

}

ATTENTION
Please note that you cannot use \CreateTheorem{idea*}{numberless} here, since we
don’t have the names defined for idea*.

3.2.3 Unnumbered idea and numbered idea*
This is a bit tricky: by default we can only create numbered idea or unnumbered idea*, and
the question is how to switch them. We shall need an intermediary for this purpose.

\CreateTheorem{idea}{create starred version}
\CreateTheorem{idea-temp}{copy existed = idea*}
\CreateTheorem{idea*}{copy existed = idea}
\CreateTheorem{idea}{copy existed = idea-temp}

3.2.4 Unnumbered idea and unnumbered idea*
This is essentially the combination of the first two cases — we need to create idea* first and
then copy it to idea:
\CreateTheorem{idea}{create starred version}
\CreateTheorem{idea}{copy existed = idea*}

In each case, the two environments idea and idea* share the same set of names.

ATTENTION
The sole purpose of this section is to demonstrate the feature of this package— some
combinations are not recommended to use in the actual documents.

3.3 The proofless version — theorems with a Q.E.D. symbol

Sometimes you may encounter a theorem without a proof, in which case you might want a
Q.E.D. symbol when the theorem is finished. This can be easily achieved via:

\CreateTheorem { theorem } { create starred version }
\CreateTheorem { theorem+ } { copy existed = theorem, qed }
\CreateTheorem { theorem+* } { copy existed = theorem*, qed }

3.3 The proofless version — theorems with a Q.E.D. symbol 8

The code above defines two new environments theorem+ and theorem+Ⱌ in addition to theorem
and theorem*. The + version behaves exactly the same as the usual version, except that it has
a Q.E.D. symbol.

3.4 Redefine the proof environment

If youwish to have a proof environment with a custom theorem style, or to have a numbered
version proof* of it, the following code could be helpful:

\ExplSyntaxOn

\newcounter { proof }
\tl_new:N \l_mymodule_name_of_proof_tl
\CreateTheorem { proof_inner }

{
name = { heading = { \l_mymodule_name_of_proof_tl } },
create-starred-version,
style = remark,
qed,
shared-counter = proof,

}

\cs_undefine:c { proof }
\cs_undefine:c { endproof }
\NewDocumentEnvironment { proof } { O{\proofname} }

{
\tl_set:Nn \l_mymodule_name_of_proof_tl { #1 }
\begin { proof_inner* }

}
{

\end { proof_inner* }
}

\NewDocumentEnvironment { proof* } { O{\proofname} }
{

\tl_set:Nn \l_mymodule_name_of_proof_tl { #1 }
\begin { proof_inner }

}
{

\end { proof_inner }
}

\SetTheoremBinding { proof } { proof_inner* }
\SetTheoremBinding { proof* } { proof_inner }

\ExplSyntaxOff

It defines an environment proof_inner (with its starred variant) with theorem style remark to
mimic the default style (you are welcome to use your own style here), and with the name to
be a variable which is latter used to define the actual environments proof and proof*. These

3.4 Redefine the proof environment 9

two environments are defined in such a way that proof is the usual unnumbered version
and proof* is the numbered version. The \SetTheoremBinding lines are to ensure that user can
directly write \SetTheorem{proof} instead of \SetTheorem{proof_inner*}.

ATTENTION
The code above requires amsthm. If you are using ntheorem as the backend, then you
need to load it with option amsthm, and remove the \newcounter line.

3.5 Advanced topic: setting the names in an external file

A typical configuration looks like this:

\NameTheorems { english }
{

, heading = {
, theorem = Theorem
, proposition = Proposition
...

}
, crefname = {

, theorem = {theorem}{theorems}
, proposition = {proposition}{propositions}
...

}
, Crefname = {

, theorem = {Theorem}{Theorems}
, proposition = {Proposition}{Propositions}
...

}
}

Here is an example for French:

\NameTheorems { french }
{

, heading = {
, theorem = Théorème
, proposition = Proposition
, example = Exemple
...

}
, crefname = {

, theorem = [le]{théorème}[les]{théorèmes}
, proposition = [la]{proposition}[les]{propositions}
, example = [l']{exemple}[les]{exemples}
...

}
, Crefname = {

3.5 Advanced topic: setting the names in an external file 10

, theorem = [Le]{théorème}[Les]{théorèmes}
, proposition = [La]{proposition}[Les]{propositions}
, example = [L']{exemple}[Les]{exemples}
...

}
}

And an example for German:

\NameTheorems { ngerman }
{

, heading = {
, theorem = Satz
...

}
, crefname = {

, theorem = { {Satz}{Sätze}
, Nominativ = [der]{Satz}[die]{Sätze}
, Genitiv = [des]{Satzes}[der]{Sätze}
, Dativ = [dem]{Satz}[den]{Sätzen}
, Akkusativ = [den]{Satz}[die]{Sätze}

}
...

}
, Crefname = {

, theorem = { {Satz}{Sätze}
, Nominativ = [Der]{Satz}[Die]{Sätze}
, Genitiv = [Des]{Satzes}[Der]{Sätze}
, Dativ = [Dem]{Satz}[Den]{Sätzen}
, Akkusativ = [Den]{Satz}[Die]{Sätze}

}
...

}
}

The configuration using \NameTheorems is compatiblewith that using \NameTheorem and there is
no need to worry about duplicated definitions — new settings will automatically overwrite
the old ones.

3.5 Advanced topic: setting the names in an external file 11

4
Known issues

• create-theoremmodifies someundocumented internalmacros of cleveref, so the behavior
might not be stable if cleveref gets updated one day.

• The current naming mechanism for theorems essentially follows the syntax of cleveref.
The configurationmay look somewhat redundant. In a future version, a newmechanism
is planed to be introduced, which would be similar to the method used by zref-clever.

• It is current not possible to temporarily change the referencing type when referencing,
whichmakes it difficult to reference a “namedtheorem”, or if you have both the singular and
plural form of an environment, say “example” and “examples”, they would be referred to
as two separate types.

• The counter aliasing function is still not perfect, (sometimes) causing incorrect ordering
in the result of \cref.

• There might be inaccuracies in the translation of those preset names.

If you run into any issues or have ideas for improvement, feel free to discuss on:

https://github.com/Jinwen-XU/create-theorem/issues
or email me via ProjLib@outlook.com.

KNOWN ISSUES 12

https://github.com/Jinwen-XU/create-theorem/issues
mailto:ProjLib@outlook.com

	1. How to load it
	2. How to use it
	2.1. Naming theorem-like environments
	2.2. Initializing theorem-like environments
	2.3. Configuring theorem-like environments
	2.4. Setting the names in external language configuration files

	3. Examples
	3.1. The environment idea
	3.2. Let's play with numbering
	3.2.1. Numbered idea and numbered idea*
	3.2.2. Numbered idea and unnumbered idea*
	3.2.3. Unnumbered idea and numbered idea*
	3.2.4. Unnumbered idea and unnumbered idea*

	3.3. The proofless version — theorems with a Q.E.D. symbol
	3.4. Redefine the proof environment
	3.5. Advanced topic: setting the names in an external file

	4. Known issues

